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Abstract

It is difficult to overestimate the multi-functional role and practical meaning of the processes of the formation of

pores in solids, especially in polymers and polymer based materials, which are capable to a noticeable plastic defor-

mation. Various mechanisms are responsible for this phenomenon in different systems. Particularly, it is debonding in

particulate filled composites, elastomeric inclusions failure in rubber toughened polymers, nucleation of microvoids at

defects in glassy polymers. Two main effects of the formation of pores should be underlined. The first is a decrease in the

material’s stiffness, which is mostly emphasized for composites filled by rigid inclusions. The second is an improvement

in the fracture toughness which is widely explored in practice. The nucleation of pores affects the fracture toughness,

firstly, absorbing the energy for the new surface formation and, secondly, facilitating of a plastic flow of the basic

material. The paper proposed is partly a review of previously obtained results and represents also the novel data and

laws. It concerns two aspects of the problem. An analysis of the conditions advantageous for the appearance of a single

pore and of the completeness of this event is the first. This part of the paper is mostly a review, but a novel comparable

analysis of the regularities of a pore formation by the way of a debonding along the surfaces of rigid particles in

particulate filled composites and caused by a failure of rubbery inclusions will be presented. The second aspect of the

problem is a spatial cooperation in the nucleation of pores. Some results in this field also have been obtained previously.

However, the corresponding part of the paper mostly represents new data as well as a new analysis. Three types of

systems will be analyzed from the cooperation point of view: particulate filled composites, rubber toughened plastics

and homogeneous polymers for which a formation of micropores in a diffuse or a cooperative manner is a well known

phenomenon named as crazing. Certain corrections of the previous conclusions concerning the cooperation arising

during the failure of rubbery particles have been performed. Furthermore, the angles of the disposition of porous zones

will be estimated. In addition, it will be shown that the conditions advantageous for an individual cavitation as well as

the laws of a diffuse or cooperative proceeding of the multiple crazing are qualitatively the same. However, the different

features will also be stated. � 2002 Elsevier Science Ltd. All rights reserved.
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Nomenclature

ðx1; x2; x3Þ Cartesian coordinates
ðr; h;uÞ spherical coordinates
ui displacement components
eij strain tensor’s components
e macroscopic strain at tension
eust macroscopic uniaxial strain value corresponded to a start of uncorrelated cavitation
ecst macroscopic uniaxial strain value corresponded to a start of correlated cavitation
rij stress tensor’s components
rð�Þ
ij stress tensor’s components in matrix (m) or inclusion (i)

r macroscopic tension stress
rc external tension stress sufficient for cavitation
Cð�Þ

ijkl elasticity tensor’s components in matrix (m) or inclusion (i)

Kð�Þ, lð�Þ, Eð�Þ, mð�Þ bulk, shear, Young’s moduli and Poisson ratio of matrix (m) or inclusion (i)
U initial volume fraction of inclusions
x volume fraction of pores, i.e. of cavitated inclusions, 06 x6U
S specific pores’ surface per a unit composite volume
K, l, E, m or
Kþ, lþ, Eþ, mþ effective bulk, shear, Young’s moduli and Poisson ratio of a composite without pores
K̂K, l̂l, ÊE, m̂m effective bulk, shear, Young’s moduli and Poisson ratio of a composite with partly cavitated

inclusions: uncorrelated mechanism of cavitation is supposed
K�, l�, E�, m� effective bulk, shear, Young’s moduli and Poisson ratio of a composite with com-

pletely cavitated inclusions
ĴJijkl effective compliance tensor of the composite with partly cavitated inclusions: uncorrelated

mechanism of cavitation is supposed
Jþ
ijkl effective compliance tensor of the composite without pores
J�
ijkl effective compliance tensor of the composite with completely cavitated inclusions
ĴJ cijkl uð Þ effective compliance tensor of the composite with partly cavitated inclusions: correlated

mechanism of cavitation is supposed
u the slope of microporous zone formed by the way of correlated cavitation to the direction,

which is transverse to the tension axis
W specific (per unit volume) work of deformation
Ue, US specific elastic and surface energies
c specific surface energy density referred to whether inclusion–matrix or pore–inclusion inter-

face
�cc reduced specific surface energy density
Cp pore–matrix interface
Ci inclusion–matrix interface
CS external boundary of the composite sphere
rp, ri, rS radii of pore, inclusion and composite sphere (Fig. 1), respectively
Rp, Ri, RS dimensionless radii of pore, inclusion and composite sphere
w debonding angle
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1. Introduction

The formation of pores in homogeneous as well as in heterogeneous solids essentially determines the
deformation and the fracture properties of a material. It can be caused by various reasons. Particularly,
debonding along the surfaces of hard inclusions is the most efficient mechanism for particulate filled
polymers. Further, cohesive failure of elastomeric particles, i.e. cohesive failure of rubber phase, causes a
nucleation of pores in rubbery toughened materials. Moreover, diffuse or cooperative crazing in homo-
geneous glassy polymers is a well-known phenomenon, which accompanies deformation, plastic flow and
fracture. Corresponding microporous zones are often called as silver cracks.
It is undoubtedly shown (see Knunyantz et al., 1983, 1986; Dekkers and Heikens, 1986; Vollenberg and

Heikens, 1989; Vollenberg et al., 1989; Berlin et al., 1990, 1992; Gorbunova et al., 1990; Fu and Wang,
1993; Fu et al., 1993; Michler, 1993; Pukansky et al., 1994, 1995; Bazhenov, 1995; Kim et al., 1996;
Dubnikova et al., 1997a,b; Dubnikova and Oshmyan, 1998; Muravin and Oshmyan, 1999) that the values
of the debonding stress and of the fraction of pores created strongly affect the mechanisms and parameters
of the deformation and fracture of particulate filled composites. In particular, an increase in the adhesive
strength causes a decrease in the pores fractions, which results in an increase in the elastic moduli, the yield
stresses and provides brittleness of the material.
Modification of brittle polymers (e.g. polystyrene, polycarbonate, epoxy) by rubber is an efficient way

for material toughening (Bucknall, 1977; Paul and Newman, 1978; Wu, 1985, 1988; Ishikawa, 1995; Is-
hikawa and Chiba, 1990; Ishikawa et al., 1996; D’Orasio et al., 1991; Kikuchi et al., 1991, 1992; Kozii and
Rosenberg, 1992; Michler, 1993; Inoue and Suzuki, 1994, 1995; Kim et al., 1996). It is undoubtedly shown
that failure of elastomeric inclusions essentially promotes the toughening.
A diffuse (delocalized) or a cooperative (localized) accumulation of microvoids in glassy polymers named

as crazing is well-known and widely discussed in the literature and therefore it does not make a sense to give
any special references. The significance of this phenomenon is determined by the fact that crazes (silver
cracks) are the only source for a plastic deformation of such materials: contrary to bulk polymer thin
polymer layers in microporous zones are capable to large non-destructive deformations.
Nucleation, accumulation, growth and confluence of pores in plastic materials is one of the most

probable and acceptable mechanism of ductile fracture. A corresponding theoretical model was proposed
by McClintock et al. (1966, 1968). Further, the creation of a new portion of a free surface as a result of any
kind of a microfracture event absorbs a certain portion of the work applied and thereby serves as a channel
of energy dissipation. At least, the appearance of pores essentially changes the deformation and fracture
abilities of the host. Particularly, it was already shown that very thin films can exhibit large plastic flow in
contrast to the bulk material. On the other side, the formation of large pores promotes the stabilization of
silver cracks and also of multiple crazing.
So, the study of the regularities of pores formation both in heterogeneous and homogeneous materials is

very important for the understanding of the associated laws which describe the phenomena of the defor-
mation, flow and fracture. It has a special meaning also for the optimization of the corresponding char-
acteristics. Three systems are considered. Particulate filled composites are the first. Debonding along the
interfaces of rigid inclusions is assumed to be responsible for the pores formation. Rubber toughened
polymers are the second. It is supposed that cohesive failure of elastomeric inclusions is the main mech-
anism of the microfracture event. Homogeneous glassy polymers are the third. A model similar to that for a
rubber toughened polymer has been developed in this case: the elastomeric inclusion is formally replaced by
the host including defects which cause the ‘‘inclusion’s’’ fracture.
Two aspects of the microfracture process can be obviously stated. The first one is the nucleation of

individual pores (primary portion) without any account of a mutual influence. The value of the macro-
scopic stress sufficient for cavitation, rc, and the size of the pores are of special interest. A brief review of the
results of corresponding and rather comprehensive theoretical investigations, particularly performed by the
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authors has been given in the paper. The main attention has been paid to a comparison of two mechanisms:
debonding along the surface of a hard particle in a particulate filled composite and elastomeric inclusion
failure in a rubber toughened polymer.
The diffuse (uncorrelated) or cooperative (correlated) development of different microfracture events is

the second side of the problem. The formation of crazes or craze-like microporous zones has been observed
and reported by many authors (see Bucknall, 1977; Paul and Newman, 1978; Michler, 1993; Lazzery and
Bucknall, 1995; Kim et al., 1996; Dubnikova et al., 1997a,b; Dubnikova and Oshmyan, 1998). However,
only preliminary theoretical simulations of the phenomenon at the elastic stage of deformation have been
performed recently by us (Dubnikova et al., 1997a,b; Herrmann and Oshmyan, 1997; Oshmyan and
Muravin, 1997). The development and correction of corresponding models as well as a comparable analysis
of the phenomenon for three systems is another goal of the paper. Particularly, the slope of a microporous
zone with respect to a deformation axis has been estimated. Such a kind of estimation was previously given
by Lazzery and Bucknall (1995) for the case of a toughened plastic. However, it was done as for a shear
band in a dilatation sensible porous media. Certainly, this approach can be used for the angle of highly
deformed zones in already porous media or for zones formed during yielding but not for the elastic stage of
a deformation.
The paper is organized as follows. Composite mechanics models used in the further simulations are

described in Section 2. Approaches and results for an estimation of the cavitation stress as well as of the
pore size are given and discussed in Section 3. The simulation of uncorrelated or correlated mechanisms
of an accumulation of voids as well as of the transition between these mechanisms forms the subject of
Section 4.

2. Composite mechanics models

Two different approaches applied in modern composite mechanics are used in the paper. The so-called
composite sphere model is better adapted for a description of an individual cavitation. Two reasons justify
a corresponding choice. Firstly, numerical methods can be applied for the solution of a basic cell-problem,
which is impossible for any self-consistent approach. Such a necessity appears in the case of an interfacial
crack along the surface of a hard inclusion. Secondly, it will be shown below that a composite sphere model
admits a non-cumbrous analytical solution for a three- (multi-)phase composite which in fact is a system
consisting of a host with an inclusion and pore inside in the case of an arising failure of an elastomeric
particle in a rubber toughened polymer.
The differential self-consistent approach is better adapted for a simulation of the process of an accu-

mulation of pores because its basic idea consists in a sequent addition of new small portions of inhomo-
geneities into an effectively homogeneous elastic continuum.

2.1. Composite sphere model

The structural assumptions of a composite sphere model proposed by Hashin (1962) are illustrated in
Fig. 1a.
The inclusions are supposed to be of the same (spherical) shape but of different size, and they are dis-

tributed in space in such a way that their shells of radii rs which are proportional to the radii ri of the
inclusions can only touch each other without intersections. A natural approximation of the stress–strain
state (SSS) in a composite by an identical SSS in every structural cell (Fig. 1b or 1c) is very convenient and
also sufficiently exact. Really, it reduces the problem of the SSS calculation to the solution of a boundary
value problem within a single representative cell. The arbitrary type of the triangle of touching cells pro-
vides the following linear conditions for the displacement field on the boundary Cs of the cell:
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uijCs ¼
X
j

eijxj; ð1Þ

where eij are the macro strain tensor components.
Furthermore, the central symmetry of the cell structure (Fig. 1) and of the boundary conditions (1)

provides the equality of the stresses in the touching points of neighboring cells and hence, delivers the
equilibrium of the system.
For the simulation of the debonding process in a particulate filled composite caused by a uniaxial tension

the following boundary value problem is stated and solved for the representative cell of Fig. 1b. Symmetric
debonding sectors, which surround the poles of a rigid inclusion by forming a debonding angle w are
supposed to be given. It means that the host is stress-free or satisfies slipping conditions on the debonded
part of the interface and zero values for the displacement vector at the bonded area. A corresponding
boundary value problem has been numerically solved by the finite element method (FEM). All the details of
the formulation and the solution of the boundary value problem can be found in our previous publications:
Berlin et al. (1991, 1992), Zhuk et al. (1993a,b, 1994).
A pore is supposed to be spherical and concentric to a spherical inclusion if a mechanism of an inclu-

sion’s cohesive failure for cavitation is accepted (Fig. 1c). Then three phases (pore, inclusion and matrix)
and two interfaces (pore–inclusion, Cp, and inclusion–matrix, Ci) appear.
The equilibrium equations

orij

oxj
¼ 0 ð2aÞ

Fig. 1. Scheme of the composite sphere structural model for a composite (a) and its representative spherical shells for the problems of

particle debonding (b) and inclusion failure (c).
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together with the continuity conditions

rðmÞ
rr

��
Ci
¼ rðiÞ

rr

��
Ci
; rðmÞ

rh

���
Ci
¼ rðiÞ

rh

���
Ci

ð2bÞ

at the interface Ci, the boundary conditions

rðiÞ
rr

��
Cp

¼ 0; rðiÞ
rh

���
Cp

¼ 0 ð2cÞ

at the stress-free boundary Cp, and the Eq. (1) form together with the constitutive equations

rij ¼ C �ð Þ
ijklekl ð3Þ

(superscript (�) defines a region of matrix (m) or inclusion (i)) an appropriate boundary value problem for a
representative cell (Fig. 1c). In a case of isotropic phases the solution of the problem (1)–(3) can be found in
spherical coordinates ðr; h;uÞ in the form:

u �ð Þ
r ¼ D �ð Þ

1 r þ
D �ð Þ
2

r2
; u �ð Þ

h ¼ u �ð Þ
u ¼ 0; ð4aÞ

for a dilatation,

keijk ¼ d
1 0 0
0 1 0
0 0 1

0@ 1A
and

u �ð Þ
r ¼ S �ð Þ

1 r

 
þ S �ð Þ

2

r2
þ S �ð Þ

3 r3 þ S �ð Þ
4

r4

!
cos 2h;

u �ð Þ
h ¼ � 3S �ð Þ

1 r

 
þ
6 1� 2m �ð Þ	 

5� 4m �ð Þ

S �ð Þ
2

r2
þ 7� 4m

�ð Þ

2m �ð Þ S �ð Þ
3 r3 � 2 S

�ð Þ
4

r4

!
sin 2h;

u �ð Þ
u ¼ 0;

ð4bÞ

for a x1-symmetrical macroscopic shear, eij
�� �� ¼ c

2 0 0
0 �1 0
0 0 �1

0@ 1A, where the Di ði ¼ 1; 2Þ and Si ði ¼ 1–4Þ

are constants which can be determined by using the boundary and continuity conditions (2b) and (2c). It is
sensible to note that analytical solutions can be found in the form (4a) and (4b) for a multi-phase composite
sphere of an arbitrary number, n, of concentric spherical shells.

2.2. Differential self-consistent model

A criterion for the uncorrelated or correlated occurrence of the formation of pores is based on the
description of their gradual accumulation. A differential self-consistent model of Vavakin and Salganik
(1975) suggests a gradual incorporation of new small portions of inclusions into an effectively homogeneous
medium, which has been formed at previous steps (see the sketch in Fig. 2). Thereby the differential self-
consistent model is mostly adapted for the simulation proposed.
Asymptotic analytical formulas for the effective bulk, K, and shear, l, moduli of an isotropic elastic

continuum characterized by the moduli KðmÞ, lðmÞ, and filled by an infinitesimal small portion U of isotropic
spherical inclusions with the moduli KðfÞ, lðfÞ
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K ¼ KðmÞ þ U
3KðmÞ þ 4lðmÞ	 


KðfÞ � KðmÞ	 

3KðfÞ þ 4lðmÞ ; ð5aÞ

l ¼ lðmÞ þ U
5lðmÞ 3K mð Þ þ 4l mð Þ	 


l fð Þ � l mð Þ	 

6l fð Þ K mð Þ þ 2l mð Þð Þ þ l mð Þ 9K mð Þ þ 8l mð Þð Þ ð5bÞ

are well known and can be found almost in every book on mechanics of composite materials, see e.g.
Christensen (1979).
An idea of a gradual addition of a small new portion of particles into an effectively homogeneous

medium admits the application of Eqs. (5a) and (5b) with a replacement of U by Du, Km, lm, by KðuÞ, lðuÞ,
K, l, by Kðu þ DuÞ, lðu þ DuÞ, and thereby the reduction of the problem of a calculation of effective
moduli to the solution of a system of ordinary differential equations

dK
du

¼
3K þ 4lð Þ KðfÞ � K

	 

3KðfÞ þ 4l ; ð6aÞ

dl
du

¼
5l 3K þ 4lð Þ lðfÞ � l

	 

6l fð Þ K þ 2lð Þ þ l 9K þ 8lð Þ ð6bÞ

with natural initial conditions

Kð0Þ ¼ KðmÞ; lð0Þ ¼ lðmÞ: ð6cÞ

Fig. 2. Sketch of the differential self-consistent model.
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Besides, the parameter u is linked with the filler fraction U by the relation:

du ¼ dU
1� U

; u ¼ ln 1

1� U
: ð6dÞ

Nevertheless, a numerical integration of the Cauchy problem (6a)–(6d) does not meet any difficulties in
the general case, it admits simple analytical solutions for certain particular cases.

2.2.1. Rigid inclusions
In the limit KðfÞ ! 1, lðfÞ ! 1 the system of differential equations can be reduced to one equation for

the ratio, u ¼ K=l,

du
du

¼ 4þ 3uð Þ 4� 3uð Þ
6 uþ 2ð Þ ð7aÞ

or for the Poisson ratio, m,

dm
du

¼ 3 1� 2mð Þ 1� 5mð Þ 1� mð Þ
2 4� 5mð Þ ; ð7bÞ

which, in turn, admits the following analytical solution:

1� U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3uð Þ5 4þ 3uðmÞð Þ
4� 3uðmÞð Þ5 4þ 3uð Þ

6

s
; ð8aÞ

K ¼ KðmÞ u
uðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3uðmÞ

4� 3u

� �5
3

s
; ð8bÞ

l ¼ lðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3u mð Þ

4� 3u

� �5
3

s
: ð8cÞ

Eq. (7b) has a stable stationary point m ¼ 0:2. So, in case of mðmÞ ¼ 0:2 the solution of Eqs. (6a)–(6d) is of
the most simple form:

l ¼ lðmÞ 1ð � UÞ�2; K ¼ KðmÞ 1ð � UÞ�2; E ¼ EðmÞ 1ð � UÞ�2 ð8dÞ
(herein and further E is used as a notation for Young’s modulus).

2.2.2. Pores
A reduction of Eqs. (6a) and (6b) to a single equation for each of the ratio u and m, respectively, can also

be performed for the opposite limit of a pore: KðfÞ ! 0, lðfÞ ! 0:

du
du

¼ 3u 4þ 3uð Þ 4� 3uð Þ
4 8þ 9uð Þ ; ð9aÞ

dm
du

¼ 3 1þ mð Þ 1� 5mð Þ 1� mð Þ
2 7� 5mð Þ : ð9bÞ

Eqs. (6a)–(6d) can be resolved in an implicit analytical form using the Eq. (9a) for the ratio:

1� U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3uð Þ5 uðmÞ	 
4

4þ 3uðmÞ	 

4� 3uðmÞ	 
5

u4 4þ 3uð Þ
6

vuut ; ð10aÞ
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K ¼ KðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3uð Þ5 uðmÞð Þ2

4� 3uðmÞð Þ5u2
3

s
; ð10bÞ

l ¼ lðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3uð ÞuðmÞ

4� 3uðmÞð Þu

� �5
3

s
: ð10cÞ

Similarly to the case of a rigid particle, m ¼ 0:2 is also a stable stationary point for Eq. (9b). Thus, if
mðmÞ ¼ 0:2 holds true, we obtain a very simple explicit formula:

l ¼ lðmÞ 1ð � UÞ2; K ¼ KðmÞ 1ð � UÞ2; E ¼ EðmÞ 1ð � UÞ2: ð10dÞ

2.2.3. Elastomeric inclusions
We suggest for an elastomer KðfÞ ¼ KðmÞ, which in connection with the inequality lðfÞ � lðmÞ reflects

rather precisely a realistic relation for rubber and a thermoset or a thermoplastic polymer. The first relation
provides the U-independence of the bulk modulus

K � KðfÞ ¼ KðmÞ ð11aÞ
and, hence, an independent equation (6b) for the shear modulus. It also admits an implicit analytical so-
lution and therefore in connection with Eq. (11a) follows:

1� U ¼ l � lðfÞ

lðmÞ � lðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðmÞð Þ2 3K þ 4lðmÞð Þ

l2 3K þ 4lð Þ
5

s
; ð11bÞ

E ¼ 18Kl
6K þ 2l : ð11cÞ

Obviously, the solution (11a)–(11c) is valid not only for a soft inclusion, but also for an arbitrary value
of lðfÞ.

3. Regularities of an individual cavitation

A complete review of the approaches for a description of a cavitation is not a goal of this paper. It can be
found in publications by Berlin et al. (1991, 1992), Zhuk et al. (1993a,b, 1994), Herrmann and Oshmyan
(1997), Lazzery and Bucknall (1995). We are going only to mention three approaches, which are based on
the conditions of a propagation of a certain microscopic defect and which formed sources for our study.
Toya (1974) used complex potentials for an analytical solution of a 2D problem for the SSS in an infinite

elastic continuum with a single circular rigid inclusion having a crack at the interface. Certainly, his so-
lution can be applied for a description of a crack propagation, however, the following objections and re-
strictions are seen for it. Firstly, his solution can be applied only in the limit of a small, but not arbitrary
filler fraction. Secondly, Toya’s solution is applicable only in a case of a sufficiently small defect when the
crack surfaces are stress-free. The third objection is general for any problem in an interfacial crack analysis:
oscillations occur in the neighborhood of a crack tip and in principle a more rigorous analysis should be
performed.
Gent (1984) simulated the propagation of a sector-shaped interfacial crack along the surface of a

spherical inclusion without the solution of any elasticity problem by estimating the elastic energy release by
means of a value for an unloaded volume. Gent’s estimation was surprisingly precise, although it is re-
stricted by a small concentration limit.
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Lazzery and Bucknall (1995) analytically solved an elasticity problem for a spherical pore surrounded by
a concentric spherical shell of an inclusion in an infinite solid simulating by the way a rubber particle
failure. A case of a single shell in an infinite matrix also corresponds to a small concentration limit.
The authors of this paper solved similar to Gent (1984) and Lazzery and Bucknall (1995) elasticity

problems for the debonding of rigid particles and the failure of elastomeric inclusions by using the com-
posite sphere model described in the previous section. This method allows a generalization of the analysis
also to an arbitrary filler fraction.
An elasticity problem for a representative cell of a composite sphere model was solved numerically by the

FEM for the debonding phenomenon (Berlin et al., 1991, 1992; Zhuk et al., 1993a,b, 1994) and analytically
for the failure of elastomeric inclusions (Herrmann and Oshmyan, 1997). Various additional factors have
been studied for the debonding problem in particulate filled composites. Particularly, thermal or chemical
contraction, and finite friction between exfoliated surfaces were accounted (Zhuk et al., 1993a,b). The
problem of an interfacial crack deviating into a matrix material was studied (Zhuk et al., 1993a,b). The
details can be found in corresponding publications. Here we would like to describe only a general approach
and to compare the results obtained for a basic case of debonding (without any contraction, friction or
crack deviation) with those obtained for the elastomeric inclusions failure.
A general criterion of linear fracture mechanics is applied for a condition advantageous for a formation

of a pore:

dUe P dUS; ð12Þ

where dUe and dUS are increments of the elastic and surface energy, respectively, caused by a defect growth.
It is convenient to refer both of the quantities to the unit volume. Let us also restrict the analysis to the case
of a uniaxial macroscopic tension by a stress r. Then the left side of Eq. (12) can be expressed as

Ue ¼
r2

2E
¼ r2

EðmÞ U
0
e ; ð13Þ

where E and EðmÞ are the composite and matrix Young’s moduli, and U 0
e the elastic energy density for a

composite with a matrix of unit Young’s modulus caused by a unit stress.
In order to clarify the further analysis it makes sense to use dimensionless radii, which will be denoted by

capital letters in contrast to the absolute radii values denoted by small letters:

Ri ¼ 1; RS ¼
1ffiffiffiffi
U3

p ; rp ¼ Rpri; rS ¼ RSri ¼
riffiffiffiffi
U3

p ; ð14Þ

where the subscripts S, i and p, refers to the cell, the inclusion and the pore radii (Fig. 1b and c), re-
spectively.
The surface energy densities with account of a shell volume can be described by the formulas:

US ¼ c
4pr2i 1� coswð Þ

4
3
pr3S

¼ 3c r
2
i 1� coswð Þ

r3S
¼ 3c U 1� coswð Þ

ri
; ð15aÞ

US ¼ 3c
r2

r3S
¼ 3cUR2

ri
ð15bÞ

in the cases of an inclusion debonding (Fig. 1b) and failure (Fig. 1c), respectively, where c is a specific
surface energy density.
It is convenient to introduce a reduced specific surface energy density

�cc ¼ 3c Em
r2ri

ð16Þ
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and to rewrite the cavitation criterion (12) in a dimensionless form:

dU 0
e

dw
1

U
P �cc sinw; ð17aÞ

dU 0
e

dR
1

U
P 2�ccR; ð17bÞ

for an inclusion debonding and a cohesive failure mechanism, respectively.
A comparison of the elastic and surface energy derivatives has been demonstrated in Fig. 3. It can be

seen that for an individual cavitation the laws are very similar for both mechanisms. The following features
are seen:
(1) The dependencies of the elastic energy derivatives with respect to the relative size of a defect have a

bell-shape both for debonding and an elastomeric inclusion failure. Namely, the first derivative vanishes at
zero and for the maximum size of a defect and reaches a unique maximum value at about 65–75% and 20–
30% of the maximum defect size for a particulate filled composite and a rubber toughened polymer, re-
spectively.
(2) The second derivative of the reduced elastic energy also vanishes at zero defect size, but the third

derivative is positive and seems to be independent of the inclusions content U. Therefore, the asymptotic

Fig. 3. Elastic ( ) and surface (––) energy derivatives via the debonding angle at the interface of a rigid particle (a) and the relative

radius of a pore inside of an elastomeric inclusion (b). Figure (a) corresponds to U ¼ 0:035 and figure (b) corresponds to �cc ¼ 0:5.
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behavior of the left-hand side of Eqs. (17a) and (17b) can be described for a small defect size by a second
power law:

dU 0
e

dw
1

U
¼ adw

2; ð18aÞ

dU 0
e

dR
1

a
¼ afR2 ð18bÞ

with universal constants ad, af for the debonding of the rigid particle and a failure of an elastomeric in-
clusion, respectively.
(3) The surface energy derivatives (right-hand sides of Eqs. (17a) and (17b)) are universal monotonously

increasing functions of a non-zero slope.
(4) The validity of the previous items generally provides two or zero intersectional points between the

bold and normal lines in Fig. 3. That means the existence of a minimum, wstðRstÞ, and a maximum, wfðRfÞ,
relative size of a defect, which is capable for propagation. Otherwise in accordance to the criterion accepted,
the defect is stable. An important quantitative difference in this aspect should be noted. Different positions
of maxima cause different completeness (final size of a pore) of a cavitation. A shift to the right position of a
maximum in a case of debonding and a further sharp drop of an elastic energy derivative provide the
possibility of an almost complete debonding. On the contrary, in the case of an elastomeric inclusion failure
the position of the maximum is shifted to the left and at 50% of a maximum defect size the elastic energy
derivatives become small. It means that a complete rupture is not realistic and requires the application of a
very intensive load to the material. This difference is caused by the following reason. Young’s and shear
moduli of an elastomeric inclusion are much lower than those of the matrix and only the bulk modulus
values are comparable. Even a small pore inside of an elastomeric particle considerably reduces the bulk
deformation of the last. An inclusion shows almost the same behavior as a pore and a further growth of the
defect loses its adventure.
(5) The data obtained both for a cavitation in particulate filled composites and in rubber-toughened

plastics can be used for the scale factor analysis (dependencies of the cavitation parameters with respect to
the absolute inclusion diameter), if the dependence of the initial defect size upon the particle radius is
known. This problem requires an additional study, but just now it makes sense to analyze two modeling
situations, namely, fixed relative and fixed absolute sizes of the defect. The first one means that wstðRstÞ and
therefore, the left-hand sides of Eqs. (17a) and (17b) at w ¼ wstðR ¼ RstÞ are given and the structure of the
right-hand side provides that the cavitation stress, rc, i.e. the stress sufficient for the pore’s formation, is
proportional to an inverse square root of the inclusion radius. In the case of a fixed absolute initial defect
size, rst, this dependence should by weaker. In the limit of a small defect size one can explore the asymptotic
relations (18a) and (18b) in order to derive the independence of the cavitation stress on a characteristic size
of the structure.
(6) The model proposed predicts a weak dependence of the cavitation parameters upon the filler fraction

(see Fig. 3b) especially for the characterizing start of a cavitation. The final size of the pore shows more
sensitivity: the larger the filler fraction is the larger should be the final size of the pore. Certainly, this
conclusion is essentially caused due to the structural model. Particularly, a much more strong dependence
of the cavitation regularities from the filler fraction had been revealed by Knunyantz and Oshmyan, 1992
for the debonding phenomenon in a particulate filled composite by applying a periodic structural model.
One of the most astonishing consequence of a periodic disposition of identical particles is an essential
transformation of the shape of a curve reflecting the dependence of an elastic energy derivative on a pore
size: unimodal dependence transforms into a bimodal ones at a sufficiently high filler fraction. It means that
there appears a so-called ‘‘dead zone’’ for an interfacial crack propagation.
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(7) For every given fraction U there exists a critical value of the reduced specific surface energy, �cccr, above
which bold and normal lines do not intersect. It means that cavitation is forbidden. If one fixes any
characteristic size of the structure (inclusion radius, for instance), this feature can be reformulated as the
existence of a certain critical cavitation stress, rcrc , which drops with ri accordingly to the inverse square law.
The larger U is, the larger is �cccr, and the smaller is rcrc . However, the corresponding dependencies are rather
weak (see Fig. 3).

4. Diffuse and cooperative cavitation mechanisms

The other side of the problem is whether a cavitation proceeds independently on different particles and
defects in a sample volume or whether there exists a certain correlation between these microfracture events.
Therefore, let us consider a cavitation not as a simultaneous formation of pores but as a gradual accu-
mulation of cavities in a deformation process, which is caused by the work applied. Such a representation
was primary proposed by Anderson and Farris (1988) for particulate filled composites and afterwards
developed and used for a treatment of their experimental data by Wong and Ait-Kadi (1995). Thereby an
uncorrelated debonding mechanism (Fig. 4a) was assumed in this study.
Both cases of uncorrelated and correlated cavitations arising in particulate filled composites due to a

debonding (Oshmyan and Muravin, 1997; Dubnikova et al., 1997a,b) as well as in rubber toughened
polymers due to an elastomeric inclusions fracture mechanism (Herrmann and Oshmyan, 1997) has recently
been simulated by the authors. It was supposed for a correlated mechanism that cavitation occurs in mi-
croporous zones, which are transverse to the direction of loading, whenever a complete absence of cavities
in the rest area of the material takes place (Fig. 4b).
This investigation will clarify the following problems.

1. A precise and detailed simulation as well as an analysis of stress–strain diagrams by applying a uniaxial
tension accompanied by a diffuse and cooperative cavitation has been performed. Moreover, not only
the transverse direction of crazes or craze-like regions has been admitted but also an arbitrary slope
of the zones (Fig. 4c).

2. The effect of the width as well as of the shape of particle size distributions onto the cavitation mechanism
and its development has been studied.

3. The kinetics of a pores accumulation including the start and the finish of the process has been described.

Fig. 4. Schemes of uncorrelated (a) as well as correlated (b), (c) cavitations with a formation of porous zones in the layers transverse to

the loading direction (b) and sloped with a certain angle u to a transverse plane (c).

K.P. Herrmann, V.G. Oshmyan / International Journal of Solids and Structures 39 (2002) 3079–3104 3091

ARTICLE IN PRESS



4. Three systems of great practical interest have been studied, analyzed and compared: particulate filled
composites, rubber toughened plastics and homogeneous glassy polymers characterized by localized
or delocalized crazing.

4.1. Model of deformation accompanied by a cavitation

The basic idea for the description of a material straining accompanied by a cavitation at an elastic stage
of deformation is a link between the strain value, e, and the volume portion, x, of the particles transformed
into pores by a debonding, failure or any other mechanism. This portion can be verified in the interval
06 x6U where U is a total inclusion volume fraction. The debonding (or failure) of an inclusion is sup-
posed to be complete. So, the pores’ volume is equal to an associated inclusions’ volume. Therefore, the
volume fraction of non-cavitated inclusions can be set to U � x. It has been assumed that each pore formed
is of the same (spherical) shape and that an inclusion does not anyhow affect a further straining.
Let us denote in the following the effective elastic characteristics of a material, filled by a fraction U of

inclusions of which a portion x was transformed into pores, as

K̂K U; xð Þ; l̂l U; xð Þ; ÊE U; xð Þ; ûu U; xð Þ; m̂m U; xð Þ ð19Þ

(uncorrelated cavitation mechanism is supposed).
The following notations are used for the increments of the work applied, the elastic strain energy and the

energy spent for formation of a new surface, S:

dW ; dUe; dUS; ð20Þ

referred to a unit volume of a sample. These increments should be calculated as

dW ¼ rde ¼ ÊE U; xð Þede; ð21aÞ

dUe ¼ d
re
2

� �
¼ ÊE U; xð Þede þ dE U; xð Þ

dx
e2

2
dx; ð21bÞ

dUS ¼ 2c
dS
dx

� �
dx; ð21cÞ

under the macroscopic condition of a uniaxial tension.
The energy balance between the terms (20) and (21a)–(21c) is supposed to hold:

dW P dUe þ dUS; ð22aÞ

or, exploring Eqs. (21a)–(21c):

0P
dÊE U; xð Þ
dx

e2

2
þ c

dS
dx

: ð22bÞ

The strain, e, and the portion of the cavitated inclusions, x, are linked by the inequality (22a) and (22b), and
this coupling is supposed to be monotonously increasing. The last assumption means:
(1) The cavitation of inclusions starts only at e ¼ est,

est ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2c dS

dx
ð0Þ dÊE

dx
ðU; 0Þ

,vuut ; ð23aÞ

and finishes if e ¼ ef , where
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ef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2c dS

dx
ðUÞ dÊE

dx
ðU;UÞ

,vuut : ð23bÞ

Outside of the cavitation region, est6 e6 ef , microfracture events do not occur, dx ¼ 0, and the balance
(22a) means that the work applied is totally spent for an elastic energy storage:

dW ¼ dUe: ð23cÞ
For e6 est the uniaxial stress–strain diagram is linear with a slope EþðUÞ ¼ ÊEðU; 0Þ, correspondent to non-
cavitated particles. The portion ef 6 e of the stress–strain diagram is linear too but with a smaller slope
E�ðUÞ ¼ ÊEðU;UÞ, correspondent to a complete transformation of the inclusions into pores.
(2) If at any value of x the expressions (22a) and (22b) form a strong inequality, then, in contrast, the

strain increment is supposed to be zero: de ¼ 0, and the cavitation of inclusions proceeds at a fixed strain
value which reflects in a vertical portion of the stress–strain diagram.
Further, the effective elastic modulus, ÊEðU; xÞ, and the new surface, SðU; xÞ, depend on a cavitation

mechanism where the equations for these quantities are derived below.

4.1.1. Elastic modulus
The calculation of the elastic modulus, ÊEðU; xÞ, and its derivative in a case of an uncorrelated cavitation

is performed in two steps using a differential self-consistent approach for each of them. Thereby the pores
are considered as inhomogeneities of a concentration x in an effectively homogeneous elastic continuum
with the moduli

KðeUUÞ; lðeUUÞ ð24Þ
and formed by the matrix and non-crashed inclusions of the concentration

eUUðU; xÞ ¼ U � x
1� x

: ð25Þ

The following argumentation justifies such a choice of the sequence of steps. Large inclusions cavitate
previously to small ones (it will be shown below). So, the consideration of large pores in an effective elastic
medium formed by a matrix filled by small inclusions is more natural than an opposite representation.
The effective moduli (24) are equal to those of a matrix if a case of crazing in a homogeneous glassy

polymer is analyzed. Eqs. (8a)–(8d) and (11a)–(11c) are used for this purpose in the cases of a particulate
filled composite and of a rubber toughened plastic, respectively, with a replacement of U by eUU.
The second step consists of the application of a differential self-consistent approach (10a)–(10d) to the

elasticity problem for a porous medium with the associated replacements U ! x, u ! ûu, um ! uðeUUÞ,
K ! K̂K, Km ! KðeUUÞ, l ! l̂l and lm ! lðeUUÞ for each of the three systems analyzed.
The most simple equation corresponds to a particulate filled composite with a matrix Poisson’s ratio of

mm ¼ 0:2. Using Eqs. (8d) and (10d), one easily obtains:

m̂m U; xð Þ � mm ¼ 0:2; ÊE U; xð Þ ¼ Em 1ð � xÞ4 1ð � UÞ�2: ð26Þ
Further, it is sensible to represent here an asymptotic result correspondent to a general case, but for a small
concentration limit U ! 0. Let us supply every characteristic by superscript ‘‘þ’’ and by superscript ‘‘�’’ in
the cases of limit cavitation levels: non-cavitated and completely cavitated inclusions, respectively. Par-
ticularly,

Eþ ¼ ÊE U; 0ð Þ; mþ ¼ m̂m U; 0ð Þ; ð27aÞ

E� ¼ ÊE U;Uð Þ; m� ¼ m̂m U;Uð Þ: ð27bÞ
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In the small concentration limit it is sufficient to use a linear approximation for the elastic characteristics of
a composite with respect to the filler volume fraction. Accepting this simplification it follows:

EþðUÞ � Em 1
	

þ aþ
mU


; ð28aÞ

E�ðUÞ � Em 1
	

� a�
mU



ð28bÞ

with

Emaþ
m ¼ dEþ Uð Þ

dU

����
U¼0

; Ema�
m ¼ � dE

� Uð Þ
dU

����
U¼0

:

By using the notation (25) one gets:

ÊEðU; xÞ � EðeUUÞð1� a�ðeUUÞxÞ � Em 1

�
þ aþ

m

U � x
1� x

� ��
1
	

� a�
mx



ð29Þ

and in the limit x ! 0, U ! 0:

dÊE U; xð Þ
dx

�����
x!0;U!0

¼ �Em aþ
m

	
þ a�

m



: ð30Þ

Referring to an analysis of a general version of the correlated mechanism (Fig. 4c, arbitrary slope u), a
particular case of a transverse zone (Fig. 3b, u ¼ 0) should be previously treated. It is convenient to
perform calculations in terms of a compliance tensor, Jijkl. The analysis is reduced to a calculation of a
compliance tensor ĴJ cijklðuÞ correspondent to a laminated composite consisting of two layers of compliances
Jþ
ijkl and J�

ijkl. These layers are isotropic and the tensors J
þ
ijkl and J�

ijkl are determined by a couple of elastic
constants, Eþð�Þ, mþð�Þ, for instance:

Jþð�Þ
iiii ¼ 1

Eþð�Þ ; Jþð�Þ
iijj ¼ � mþð�Þ

Eþð�Þ ; Jþð�Þ
ijij ¼ 1þ mþð�Þ

2Eþð�Þ ; i 6¼ j: ð31Þ

By introducing the quantity a, 06 a6 1, as a relative portion of a porous region,

a ¼ x
U
; ð32Þ

accepting x1 as a stretching axis as well as by using the well-known elasticity theory for a laminated
composite a transversely symmetric compliance tensor ĴJ cijklð0Þ can be described as follows:

ĴJ c1111ð0Þ ¼ Jþ
1111ð1� aÞ þ J�

1111a�
2 Jþ

1122 � J�
1122

	 
2
a 1� að Þ

Jþ
1111 þ Jþ

1122ð Þaþ J�
1111 þ J�

1122ð Þ 1� að Þ ; ð33aÞ

ĴJ c1122ð0Þ ¼ ĴJ c1133ð0Þ ¼
Jþ
1122 J�

1111 þ J�
1122

	 

1� að Þ þ J�

1122 Jþ
1111 þ Jþ

1122ð Þa
Jþ
1111 þ Jþ

1122ð Þaþ J�
1111 þ J�

1122ð Þ 1� að Þ ; ð33bÞ

ĴJ c2222ð0Þ ¼ ĴJ c3333ð0Þ ¼
a Jþ

1111aþ J�
1111 1� að Þ

	 

� b Jþ

1122aþ J�
1122 1� að Þ

	 

Jþ
1111aþ J�

1111 1� að Þð Þ2 � Jþ
1122aþ J�

1122 1� að Þð Þ2
; ð33cÞ

ĴJ c1212ð0Þ ¼ ĴJ c1313ð0Þ ¼ aJ�
1212 þ 1ð � aÞJþ

1212 ð33dÞ

with

a ¼ Jþ
1111J

�
1111 þ Jþ

1122J
�
1122;
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b ¼ Jþ
1111J

�
1122 þ J�

1111J
þ
1122:

Let us now turn to an arbitrary slope, u, of a microporous zone (Fig. 3c). By applying a general tensor
transformation law

ĴJ cijklðuÞ ¼ aimajnakpalqĴJ cmnpqð0Þ ð34aÞ

with

kaijðuÞk ¼
cosu � sinu 0
sinu cosu 0
0 0 1

0@ 1A;

it follows:

ĴJ c1111ðuÞ ¼
1

4
cos2 2uðĴJ c1111ð0Þ þ ĴJ c2222ð0Þ � 2ĴJ c1122ð0Þ � 4ĴJ c1212ð0ÞÞ þ

1

2
cos 2uðJ c1111ð0Þ � J c2222ð0ÞÞ

þ 1
4
ðĴJ c1111ð0Þ þ ĴJ c2222ð0Þ þ 2ĴJ c1122ð0Þ þ 4ĴJ c1212ð0ÞÞ: ð34bÞ

A similar equation holds true for the x-derivative, ĴJ c1111ðuÞ
	 


x
. In the case of transverse zones corre-

sponding derivatives can be calculated by using Eqs. (32) and (33a)–(33d):

ðĴJ cijklð0ÞÞx ¼
ðĴJ cijklð0ÞÞa

U
: ð35Þ

Similarly to the case of an uncorrelated cavitation, it is also worthwhile to determine the data corre-
spondent to the limit x ! 0, U ! 0. One gets:

ðĴJ c1111ð0ÞÞx
���
x!0;U!0

¼ J�
1111 � Jþ

1111

U
; ð36aÞ

ðĴJ c1122ð0ÞÞx
���
x!0;U!0

¼ J�
1122 � Jþ

1122

U
; ð36bÞ

ðĴJ c2222ð0ÞÞx
���
x!0;U!0

¼ J�
2222 � Jþ

2222

U
; ð36cÞ

ðĴJ c1212ð0ÞÞx
���
x!0;U!0

¼ J�
1212 � Jþ

1212

U
: ð36dÞ

Further, a substitution of Eqs. (33a)–(33d) into Eq. (34b) and of Eqs. (36a)–(36d) into the equation for the
x-derivatives obviously gives

ĴJ c1111ðuÞjx!0;U!0 � ĴJ c1111ð0Þjx!0;U!0 ¼
1

Em
; ð37aÞ

ðĴJ c1111ðuÞÞxjx!0;U!0 � ðĴJ c1111ð0ÞÞxjx!0;U!0 ¼
J�
1111 � Jþ

1111

U
¼ a�

m þ aþ
m

Em
ð37bÞ

and for ÊEc
	 


x
¼ dÊEc=dx:

ðÊEcÞxjx!0;U!0 ¼
1

ðĴJ c1111Þx

�����
x!0;U!0

¼ � ðĴJ c1111Þx
ðĴJ c1111Þ

2

�����
x!0;U!0

¼ �Em a�
m

	
þ aþ

m



: ð37cÞ
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It is important to note that one obtains a rigorous proof of the following statement. Both the stiffness and
the stiffness derivative with respect to a cavitated portion, x, of inclusions do not depend upon whether an
uncorrelated or a correlated cavitation exists in the small concentration limit. This conclusion seems to be
intuitively true because a correlation in the proceeding of any events will not be important if the number of
events tends to zero.

4.1.2. Surface area
In the following section the uncorrelated and the correlated cavitation mechanisms will also be analyzed.

Let pðrÞ be a particle size distribution, i.e. pðrÞdr defines a volume portion of particles with the radii in the
interval r � r þ dr. The ordered particle size sequence which is a case of a spatial uncorrelated cavitation
suggests for every given x a complete crash of a particle at any point of the volume in the interval
r1ðxÞ6 r6 r2ðxÞ. Obviously r1ðxÞ and r2ðxÞ are decreasing and increasing functions, respectively. x, r1, r2 and
S are related to each other as follows:

x ¼ U

R r2ðxÞ
r1ðxÞ p rð ÞdrR1
0

p rð Þdr
; S xð Þ ¼ U

R r2ðxÞ
r1ðxÞ p rð Þ 4pr2

ð4=3Þpr3 drR1
0

p rð Þdr
¼ U

R r2 xð Þ
r1 xð Þ

3p rð Þ
r drR1

0
p rð Þdr

: ð38Þ

Thus, the relation holds true:

dS
dx

¼ 3

r1ðxÞ
þ 3

r2ðxÞ
ð39aÞ

and it becomes clear, that the larger r1ðxÞ and r2ðxÞ are, the smaller is the derivative dS=dx and the more
advantageous is a cavitation. Therefore, a decreasing size order is the most advantageous for a cavitation.
Particularly, r2 should be infinite and after a re-denotation r1ðxÞ ! rðxÞ Eq. (39a) transforms into:

dS
dx

¼ 3

rðxÞ : ð39bÞ

A correlated cavitation mechanism supposes a correlation in a spatial position of pores formed but a si-
multaneous cavitation of inclusions in corresponding zones independently of their size. Such an assumption
leads to an independence of the derivative:

dS
dx

¼ const ¼ 3
R1
0

p rð Þ
r drR1

0
pðrÞdr

: ð39cÞ

If a particle size distribution is a narrow one, then the Eqs. (39b) and (39c) predict the same values.
Nevertheless, a general case of an arbitrary particle size distribution can be analyzed. A smooth dis-

tribution formed by second order splines is chosen for the analysis:

pðrÞ ¼ 2 r � rmin
Dl

� �2
for rmin6 r6 rl; ð40aÞ

pðrÞ ¼ 1� 2 r � rml
Dl

� �2
for rl6 r6 rml; ð40bÞ

pðrÞ ¼ 1 for rml6 r6 rmr; ð40cÞ

pðrÞ ¼ 1� 2 r � rmr
Dr

� �2
for rmr6 r6 rr; ð40dÞ
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pðrÞ ¼ 2 r � rmax
Dr

� �2
for rr6 r6 rmax; ð40eÞ

pðrÞ ¼ 0 otherwise: ð40fÞ

A shape of the distribution (40a)–(40f) is depicted in Fig. 5 and the parameters introduced are linked by the
relations:

Dl ¼ rml � rmin; rl ¼
rml þ rmin

2
; Dr ¼ rmax � rmr; rr ¼

rmr þ rmax
2

:

In the following a symmetric particular case of Eqs. (40a)–(40f)

rmin ¼ R� kð þ 1ÞD; rml ¼ R� kD; rmr ¼ Rþ kD; rmax ¼ Rþ kð þ 1ÞD ð41Þ

is considered. The parameter k determines the sharpness of the distribution. R is equal to a mean radius

R ¼ �rr ¼ M1

M0

; ð42Þ

and the dispersion d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � �rr2

p
is determined by the formula:

d ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k3 þ 24k2 þ 14k þ 3

24 2k þ 1ð Þ

s
; ð43Þ

Mn is a widely accepted denotation for a distribution moment:

Mn ¼
Z 1

0

rnpðnÞdn: ð44Þ

The same values of �rr and d can be obtained for various D and k values. The variation of these parameters at
fixed values of �rr and d will be classified in a further analysis as an effect of the distribution shape.

4.2. Deformation diagrams

Cavitation kinetics and corresponding stress–strain diagrams of particulate composites, rubber tough-
ened plastics and glassy polymers under a uniaxial tension are represented in Figs. 6–8, respectively.

Fig. 5. Sketch of a particle size distribution.
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The following common and distinguished features are seen:

1. The accumulation of pores is accompanied by a drop in the secant elastic modulus for every system and
cavitation mechanism. Naturally, the gap between the maximum (no cavitated inclusion) and minimum
(every inclusion is cavitated) of a modulus is widest for the case of a particulate filled composite (Fig. 6b)
and narrowest for the case of a rubber toughened plastic (Fig. 7b). Nevertheless, that both the matrix
and the inclusions are supposed to be elastic, the diagrams are non-linear and even exhibit a maximum
for an uncorrelated mechanism of debonding, Fig. 6b, or a correlated mechanism of elastomeric inclu-
sions failure, Fig. 7b, for example.

2. Cavitation mostly proceeds in a non-sharp manner with a gradual accumulation of the pores. An exclu-
sion exists in the case of correlated elastomeric inclusions (dotted lines in Fig. 7). That means a failure of
all the particles occurs simultaneously or almost simultaneously.

Fig. 6. Kinetics of debonding and corresponding non-linear stress–strain uniaxial diagrams for a particulate filled composite, calcu-

lated in the frameworks of an uncorrelated (––) and a correlated (� � �) mechanism at U ¼ 30 vol.%. Matrix characteristics: Em ¼ 1,
mm ¼ 0:3; reduced specific surface energy: �cc ¼ 0:0004; parameters of particle size distribution: �rr ¼ 1; d ¼ 0:3; k ¼ 1.

Fig. 7. Kinetics of elastomeric inclusions failure and corresponding non-linear stress–strain uniaxial diagrams for a rubber toughened

plastic, calculated in the frameworks of an uncorrelated (––) and a correlated (� � �) mechanism at U ¼ 30 vol.%. Matrix characteristics:
Em ¼ 1, mm ¼ 0:3; rubbery inclusion shear modulus: 0.01; reduced specific surface energy: �cc ¼ 0:0004; parameters of particle size
distribution: �rr ¼ 1; d ¼ 0:3; k ¼ 5.
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3. The model predicts that a minimum strain value, est, associated to a start of a cavitation corresponds to
an uncorrelated or a correlated mechanism which depends upon the special system. For example, for
30 vol.% of a filler fraction and the same parameters of a particle size distribution (Figs. 6–8) the deb-
onding mechanism primary starts in a particulate filled composite; the uncorrelated failure of elastomeric
particles occurs previously to a correlated one in a rubber toughened plastic; delocalized and localized
crazing in a glassy polymer start almost at the same strain value. A relationship between these two char-
acteristic strain values is very important and will be discussed below.

4.3. The slope of microporous zones

The technique developed (Eqs. (33a)–(34b)) gives the possibility not only to describe the deformation
accompanied by a correlated formation of the pores in arbitrary sloped zones, but also to minimize the
strain correspondent to a start of a cavitation by a proper choice of the angle of the zones disposition.
The model predicts a transverse disposition of microporous zones formed by the way of an elastomeric

inclusions failure with respect to the tension direction. It makes sense to remind that the ratio of the shear
modulus of an inclusion to those of the matrix was chosen as li=lm ¼ 10�2. The slope of the zones formed
by debonding (Fig. 9a, filled circled) and by crazing (Fig. 9a, open circles) is about 30� and drops slightly
with the fraction of inhomogeneities.
Moreover, it is suitable to note here that the conclusion concerning zero slope in the case of elastomeric

inclusions failure contradicts with the results of Lazzery and Bucknall (1995). Firstly, they found experi-
mentally by a microscopic observation that the slope is about 11�, and secondly, they delivered a theoretical
estimation describing this value with a good accuracy. However, the contradiction disappears if one keeps
in mind that Lazzery’s and Bucknall’s estimate was derived for the slope of shear bands in a dilatation
sensitive plastic medium. Therefore, it is supposed that pores were formed previously or at least during a
plastic flow whenever the prediction of our model corresponds to a cavitation in an elastic stage of de-
formation.
Thus, the model predicts the transverse disposition of microporous zones formed by a cavitation of very

soft inclusions (li=lm ¼ 10�2) and a slope of the last if the inclusions are sufficiently stiff (li=lm ¼ 1). The
results of a detailed analysis of the slope dependence on the ratio of the inclusion to matrix modulus are
represented in Fig. 9b for an inclusion volume fraction U ¼ 0:1 (circles); 0.3 (triangles); 0.5 (squares). A

Fig. 8. Kinetics of delocalized (––) and localized (� � �) crazing and corresponding non-linear stress–strain uniaxial diagrams for a glassy
polymer calculated at U ¼ 30 vol.% of modeling defects capable for a cavitation. Matrix characteristics: Em ¼ 1, mm ¼ 0:3; reduced
specific surface energy: �cc ¼ 0:01; parameters of particle size distribution: �rr ¼ 1; d ¼ 0:3; k ¼ 1.
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rather sharp transition from perpendicular to sloped microporous zones occurs with an increase in the
inclusion stiffness at li=lm ¼ 0:1–0:3, and the corresponding angle is about 25–30�.

4.4. Uncorrelated–correlated transition

The principle of the minimum work of deformation has been chosen as a criterion for the existence of an
uncorrelated or a correlated cavitation. As it was already discussed, initial linear portions of the diagrams
(Figs. 6–8b) correspond to the absence of pores and, hence, do not depend on a mechanism of cavitation.
The accumulation of pores causes a decrease of the secant modulus and thereby of the work of defor-
mation. Thus, the principle of minimum work is equivalent to the principle of the start of a cavitation.
Summarizing the arguments given, we can define a ratio of a strain correspondent to a start of an

uncorrelated cavitation, eust, to a strain correspondent to a start of a correlated cavitation, ecst, as a value
responsible for the proceeding of an uncorrelated or a correlated mechanism, respectively. If eust=e

c
st < 1,

then an uncorrelated mechanism governs by cavitation. If eust=e
c
st > 1, then a formation of crazes or craze-

like zones is more advantageous than a diffuse cavitation. A condition eust=e
c
st ¼ 1 serves as a criterion for a

transition from an uncorrelated to a correlated cavitation.
The results of a simulation for the existence of a diffuse or a correlated cavitation by debonding, elas-

tomeric inclusion failure and on defects in homogeneous polymers are represented in Figs. 10–12, re-
spectively. It is worthwhile to underline the following regularities found:

1. The cavitation laws are very similar for every system studied.
2. The previous analysis has shown that correspondent to the values of the elastic modulus (compare Eqs.
(30) and (37c)) and the surface area (compare Eqs. (39b) and (39c) for a narrow particle size distribu-
tion), the strain values eust and ecst are equal in the limit U ! 0, d ! 0.

3. An increase in the inhomogeneities fraction naturally causes a mutual influence of the pores and a ten-
dency to a cooperation which becomes reflected in an increase in the ratio eust=e

c
st.

4. An increase in the width of a particle size distribution (dispersion d) at a fixed mean size of the particles
noticeably reduces the surface area derivative (see Eqs. (22a) and (22b)) at the start of a cavitation in the
case of an uncorrelated mechanism because large inclusions can be crashed first. On the contrary the

Fig. 9. Slopes of craze-like zones with respect to the direction of tension. Plots are drawn versus filler fraction (a) and inclusion to

matrix shear modulus ratio (b). Filled circles (a) correspond to the debonding mechanism of the cavitation, (�) (a) correspond to a
crazing in a glassy polymer. A cavitation mechanism of an inclusion rupture is analyzed in figure (b) at 10% (�); 30% (M); 50% (�) of a
filler fraction.
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mean size is responsible for the corresponding constant value of this derivative in case of a correlated
mechanism (see Eq. (39c)). Thereby an increase in d causes the decrease in the ratio eust=e

c
st, particularly,

the transitional point eust=e
c
st ¼ 1 has been shifted to a larger filler fraction U.

5. A decrease in the k-value means a change in the shape of a particle size distribution from a sharp to a
gradual vanishing (see Fig. 5 and Eqs. (40a)–(40f) and (41)). A large k-value means an extended plateau
in comparison with a transitional portion. On the contrary, the limit k ! 0 means an absence of the pla-
teau. Furthermore, it can be stated that a more gradual distribution at a fixed width (Figs. 10–12b) pro-
vides smaller values of the strain ratio eust=e

c
st, and hence, an increase in the critical inhomogeneities

fraction. However, the effect is not greatly emphasized.

Fig. 10. Ratio of a strain, eust, correspondent to a start of an uncorrelated debonding to that correspondent to a correlated mechanism,
ecst, versus a rigid particle fraction, U, at various width, d, but of a fixed shape, k ¼ 1, (a), as well as at a various shape of a particle size
distribution but at a fixed width, d ¼ 0:3 (b).

Fig. 11. Ratio of a strain, eust, correspondent to a start of an uncorrelated elastomeric inclusions failure to that of a correlated
mechanism, ecst, versus the inclusion fraction, U, at various width, d, but of a fixed shape, k ¼ 1, (a), and at a various shape of an
inclusions size distribution but at a fixed width, d ¼ 0:3 (b).
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6. The most sharp eust=e
c
st concentration dependence corresponds to the debonding mechanism of a cavita-

tion in particulate filled composites which provides smaller values for the critical fractions. The signifi-
cance of this law consists in a most essential change of the material stiffness as a result of a replacement
of rigid inclusions by pores.

5. Conclusion

1. A comparable analysis of the laws of pores formation in three systems––particulate filled composites,
rubber toughened polymers and individual polymer solids––has been performed in the framework of
a general model proposed.

2. Two sides of the problem have been considered. Conditions and completeness of an individual cavitation
is the first. Correlation of microfracture events on neighboring inclusions and the position of micropor-
ous zoned is the second.

3. A number of important common features of an individual cavitation has been established. Namely, the
link between the stress sufficient for a cavitation and the size of the defect responsible for the formation
of a pore was found. Particularly, the critical stress value below which a defect of any size is disable for
the transformation into a pore was estimated. Above this critical value a range of the defects, sizes exists
which are effective as sources of pores: the higher the stress is, the wider is the range.

4. The most important difference in the laws of an individual cavitation for the three systems studied is their
completeness: the stiffer the inclusion is, the closer is the size of the pore to the size of the inclusion from
which the pore is formed.

5. The model developed predicts an uncorrelated cavitation at a low inclusions fraction and a correlation
of microfracture events on neighboring particles at their high content. Thus, an increase in inclusion’s
fraction causes an uncorrelated–correlated transition. The wider the particle size distribution is, and
the softer the inclusions are, the larger is the transitional fraction value.

6. If a correlated cavitation occurs, then the inclusion stiffness affects the slope of the microporous zones to
a plane transverse to the tension axis. There exists a threshold value of 0:1–0:3 for the shear modulus

Fig. 12. Ratio of a strain, eust, correspondent to a start of delocalized crazing to that correspondent to a localized one, e
c
st, versus the

defect volume fraction, U, at various width, d, but of a fixed shape, k ¼ 1 (a), and at a various shape of a defect size distribution but at a
fixed width, d ¼ 0:3 (b).
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ratio, li=lm (the threshold value is dependent on the inclusion fraction), below which craze-like zones
should be transverse to the tension axis. Such a situation exists in case of the failure of elastomeric in-
clusions failure. The model predicts a sharp increase in the slope upto approximately 30� above the crit-
ical value of the relative inclusion stiffness.
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